\(\int \frac {\tan (c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx\) [541]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F(-1)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 116 \[ \int \frac {\tan (c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=-\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{(a-i b)^{3/2} d}-\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{(a+i b)^{3/2} d}+\frac {2 a}{\left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}} \]

[Out]

-arctanh((a+b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))/(a-I*b)^(3/2)/d-arctanh((a+b*tan(d*x+c))^(1/2)/(a+I*b)^(1/2))/(
a+I*b)^(3/2)/d+2*a/(a^2+b^2)/d/(a+b*tan(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {3610, 3620, 3618, 65, 214} \[ \int \frac {\tan (c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=\frac {2 a}{d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}-\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d (a-i b)^{3/2}}-\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d (a+i b)^{3/2}} \]

[In]

Int[Tan[c + d*x]/(a + b*Tan[c + d*x])^(3/2),x]

[Out]

-(ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]]/((a - I*b)^(3/2)*d)) - ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt
[a + I*b]]/((a + I*b)^(3/2)*d) + (2*a)/((a^2 + b^2)*d*Sqrt[a + b*Tan[c + d*x]])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3610

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b
*c - a*d)*((a + b*Tan[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 + b^2))), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3618

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c*(
d/f), Subst[Int[(a + (b/d)*x)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 3620

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \frac {2 a}{\left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}+\frac {\int \frac {b+a \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx}{a^2+b^2} \\ & = \frac {2 a}{\left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}-\frac {\int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx}{2 (i a-b)}+\frac {\int \frac {1+i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx}{2 (i a+b)} \\ & = \frac {2 a}{\left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}+\frac {\text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 (a-i b) d}+\frac {\text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 (a+i b) d} \\ & = \frac {2 a}{\left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}+\frac {\text {Subst}\left (\int \frac {1}{-1+\frac {i a}{b}-\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{(i a-b) b d}-\frac {\text {Subst}\left (\int \frac {1}{-1-\frac {i a}{b}+\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b (i a+b) d} \\ & = -\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{(a-i b)^{3/2} d}-\frac {\text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{(a+i b)^{3/2} d}+\frac {2 a}{\left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.17 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.86 \[ \int \frac {\tan (c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=\frac {(a+i b) \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},\frac {a+b \tan (c+d x)}{a-i b}\right )+(a-i b) \operatorname {Hypergeometric2F1}\left (-\frac {1}{2},1,\frac {1}{2},\frac {a+b \tan (c+d x)}{a+i b}\right )}{\left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}} \]

[In]

Integrate[Tan[c + d*x]/(a + b*Tan[c + d*x])^(3/2),x]

[Out]

((a + I*b)*Hypergeometric2F1[-1/2, 1, 1/2, (a + b*Tan[c + d*x])/(a - I*b)] + (a - I*b)*Hypergeometric2F1[-1/2,
 1, 1/2, (a + b*Tan[c + d*x])/(a + I*b)])/((a^2 + b^2)*d*Sqrt[a + b*Tan[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1746\) vs. \(2(98)=196\).

Time = 0.08 (sec) , antiderivative size = 1747, normalized size of antiderivative = 15.06

method result size
derivativedivides \(\text {Expression too large to display}\) \(1747\)
default \(\text {Expression too large to display}\) \(1747\)

[In]

int(tan(d*x+c)/(a+b*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

2*a/(a^2+b^2)/d/(a+b*tan(d*x+c))^(1/2)-1/4/d/(a^2+b^2)^2*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/
2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^2-1/4/d*b^2/(a^2+b^2)^2*ln((a+b*tan(d*x+c))
^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+1/2/d/(a^2+
b^2)^(5/2)*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2
)^(1/2)+2*a)^(1/2)*a^3+1/2/d*b^2/(a^2+b^2)^(5/2)*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan
(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a-2/d*b^4/(a^2+b^2)^(5/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/
2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))+1/d/(a^2+b^2
)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+
b^2)^(1/2)-2*a)^(1/2))*a^2-1/d/(a^2+b^2)^2/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)
-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^3+1/d*b^2/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^
(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))-1/d*b^2/(
a^2+b^2)^2/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a
^2+b^2)^(1/2)-2*a)^(1/2))*a-2/d*b^2/(a^2+b^2)^(5/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2
*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2+1/4/d/(a^2+b^2)^2*ln(b*tan(d*x+c)+a+(a+
b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^2+1/4/d*b^2
/(a^2+b^2)^2*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b
^2)^(1/2)+2*a)^(1/2)-1/2/d/(a^2+b^2)^(5/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1
/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^3-1/2/d*b^2/(a^2+b^2)^(5/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*
x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a+2/d*b^4/(a^2+b^2)^(
5/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2
)^(1/2)-2*a)^(1/2))-1/d/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2
+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2+1/d/(a^2+b^2)^2/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arcta
n((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^3-1/d*b^2/(a^2+b^2
)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+
b^2)^(1/2)-2*a)^(1/2))+1/d*b^2/(a^2+b^2)^2/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(
a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a+2/d*b^2/(a^2+b^2)^(5/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1
/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1955 vs. \(2 (94) = 188\).

Time = 0.28 (sec) , antiderivative size = 1955, normalized size of antiderivative = 16.85 \[ \int \frac {\tan (c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

[In]

integrate(tan(d*x+c)/(a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/2*(((a^2*b + b^3)*d*tan(d*x + c) + (a^3 + a*b^2)*d)*sqrt(((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^2*sqrt(-(9*
a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4
)) + a^3 - 3*a*b^2)/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^2))*log(-(3*a^2 - b^2)*sqrt(b*tan(d*x + c) + a) + (
2*(a^7 + 3*a^5*b^2 + 3*a^3*b^4 + a*b^6)*d^3*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b
^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)) - (3*a^4 - 4*a^2*b^2 + b^4)*d)*sqrt(((a^6 + 3*a^4*b^2
+ 3*a^2*b^4 + b^6)*d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*
a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)) + a^3 - 3*a*b^2)/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^2))) - ((a^2*b + b^
3)*d*tan(d*x + c) + (a^3 + a*b^2)*d)*sqrt(((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^
4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)) + a^3 - 3*a*b^2
)/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^2))*log(-(3*a^2 - b^2)*sqrt(b*tan(d*x + c) + a) - (2*(a^7 + 3*a^5*b^2
 + 3*a^3*b^4 + a*b^6)*d^3*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 +
15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)) - (3*a^4 - 4*a^2*b^2 + b^4)*d)*sqrt(((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)
*d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^
10 + b^12)*d^4)) + a^3 - 3*a*b^2)/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^2))) - ((a^2*b + b^3)*d*tan(d*x + c)
+ (a^3 + a*b^2)*d)*sqrt(-((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 +
 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)) - a^3 + 3*a*b^2)/((a^6 + 3*a^4*b
^2 + 3*a^2*b^4 + b^6)*d^2))*log(-(3*a^2 - b^2)*sqrt(b*tan(d*x + c) + a) + (2*(a^7 + 3*a^5*b^2 + 3*a^3*b^4 + a*
b^6)*d^3*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^
2*b^10 + b^12)*d^4)) + (3*a^4 - 4*a^2*b^2 + b^4)*d)*sqrt(-((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^2*sqrt(-(9*a^
4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4))
 - a^3 + 3*a*b^2)/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^2))) + ((a^2*b + b^3)*d*tan(d*x + c) + (a^3 + a*b^2)*
d)*sqrt(-((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15
*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)) - a^3 + 3*a*b^2)/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 +
 b^6)*d^2))*log(-(3*a^2 - b^2)*sqrt(b*tan(d*x + c) + a) - (2*(a^7 + 3*a^5*b^2 + 3*a^3*b^4 + a*b^6)*d^3*sqrt(-(
9*a^4*b^2 - 6*a^2*b^4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d
^4)) + (3*a^4 - 4*a^2*b^2 + b^4)*d)*sqrt(-((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^
4 + b^6)/((a^12 + 6*a^10*b^2 + 15*a^8*b^4 + 20*a^6*b^6 + 15*a^4*b^8 + 6*a^2*b^10 + b^12)*d^4)) - a^3 + 3*a*b^2
)/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d^2))) - 4*sqrt(b*tan(d*x + c) + a)*a)/((a^2*b + b^3)*d*tan(d*x + c) +
(a^3 + a*b^2)*d)

Sympy [F]

\[ \int \frac {\tan (c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=\int \frac {\tan {\left (c + d x \right )}}{\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(tan(d*x+c)/(a+b*tan(d*x+c))**(3/2),x)

[Out]

Integral(tan(c + d*x)/(a + b*tan(c + d*x))**(3/2), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {\tan (c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(tan(d*x+c)/(a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(b-a>0)', see `assume?` for mor
e details)Is

Giac [F(-1)]

Timed out. \[ \int \frac {\tan (c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate(tan(d*x+c)/(a+b*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Timed out

Mupad [B] (verification not implemented)

Time = 7.16 (sec) , antiderivative size = 2844, normalized size of antiderivative = 24.52 \[ \int \frac {\tan (c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

[In]

int(tan(c + d*x)/(a + b*tan(c + d*x))^(3/2),x)

[Out]

(2*a)/(d*(a^2 + b^2)*(a + b*tan(c + d*x))^(1/2)) - atan(((1/(a^3*d^2 + b^3*d^2*1i - 3*a*b^2*d^2 - a^2*b*d^2*3i
))^(1/2)*(((1/(a^3*d^2 + b^3*d^2*1i - 3*a*b^2*d^2 - a^2*b*d^2*3i))^(1/2)*(32*a^6*b^6*d^4 - 48*a^2*b^10*d^4 - 3
2*a^4*b^8*d^4 - 16*b^12*d^4 + 48*a^8*b^4*d^4 + 16*a^10*b^2*d^4 + ((1/(a^3*d^2 + b^3*d^2*1i - 3*a*b^2*d^2 - a^2
*b*d^2*3i))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a^5*b^8*d^5 + 640*a^7*b^6
*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d^5))/4))/2 + ((a + b*tan(c + d*x))^(1/2)*(16*b^10*d^3 + 32*a^2*b^8*d^3 -
 32*a^6*b^4*d^3 - 16*a^8*b^2*d^3))/2)*1i + (1/(a^3*d^2 + b^3*d^2*1i - 3*a*b^2*d^2 - a^2*b*d^2*3i))^(1/2)*(((1/
(a^3*d^2 + b^3*d^2*1i - 3*a*b^2*d^2 - a^2*b*d^2*3i))^(1/2)*(16*b^12*d^4 + 48*a^2*b^10*d^4 + 32*a^4*b^8*d^4 - 3
2*a^6*b^6*d^4 - 48*a^8*b^4*d^4 - 16*a^10*b^2*d^4 + ((1/(a^3*d^2 + b^3*d^2*1i - 3*a*b^2*d^2 - a^2*b*d^2*3i))^(1
/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a^5*b^8*d^5 + 640*a^7*b^6*d^5 + 320*a^9
*b^4*d^5 + 64*a^11*b^2*d^5))/4))/2 + ((a + b*tan(c + d*x))^(1/2)*(16*b^10*d^3 + 32*a^2*b^8*d^3 - 32*a^6*b^4*d^
3 - 16*a^8*b^2*d^3))/2)*1i)/((1/(a^3*d^2 + b^3*d^2*1i - 3*a*b^2*d^2 - a^2*b*d^2*3i))^(1/2)*(((1/(a^3*d^2 + b^3
*d^2*1i - 3*a*b^2*d^2 - a^2*b*d^2*3i))^(1/2)*(16*b^12*d^4 + 48*a^2*b^10*d^4 + 32*a^4*b^8*d^4 - 32*a^6*b^6*d^4
- 48*a^8*b^4*d^4 - 16*a^10*b^2*d^4 + ((1/(a^3*d^2 + b^3*d^2*1i - 3*a*b^2*d^2 - a^2*b*d^2*3i))^(1/2)*(a + b*tan
(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a^5*b^8*d^5 + 640*a^7*b^6*d^5 + 320*a^9*b^4*d^5 + 64*
a^11*b^2*d^5))/4))/2 + ((a + b*tan(c + d*x))^(1/2)*(16*b^10*d^3 + 32*a^2*b^8*d^3 - 32*a^6*b^4*d^3 - 16*a^8*b^2
*d^3))/2) - (1/(a^3*d^2 + b^3*d^2*1i - 3*a*b^2*d^2 - a^2*b*d^2*3i))^(1/2)*(((1/(a^3*d^2 + b^3*d^2*1i - 3*a*b^2
*d^2 - a^2*b*d^2*3i))^(1/2)*(32*a^6*b^6*d^4 - 48*a^2*b^10*d^4 - 32*a^4*b^8*d^4 - 16*b^12*d^4 + 48*a^8*b^4*d^4
+ 16*a^10*b^2*d^4 + ((1/(a^3*d^2 + b^3*d^2*1i - 3*a*b^2*d^2 - a^2*b*d^2*3i))^(1/2)*(a + b*tan(c + d*x))^(1/2)*
(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a^5*b^8*d^5 + 640*a^7*b^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d^5))/4)
)/2 + ((a + b*tan(c + d*x))^(1/2)*(16*b^10*d^3 + 32*a^2*b^8*d^3 - 32*a^6*b^4*d^3 - 16*a^8*b^2*d^3))/2) + 16*a*
b^8*d^2 + 48*a^3*b^6*d^2 + 48*a^5*b^4*d^2 + 16*a^7*b^2*d^2))*(1/(a^3*d^2 + b^3*d^2*1i - 3*a*b^2*d^2 - a^2*b*d^
2*3i))^(1/2)*1i - atan((((1i/(4*(a^3*d^2*1i + b^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2)*((1i/(4*(a^3*d^2*1
i + b^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5
 + 640*a^5*b^8*d^5 + 640*a^7*b^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d^5) - 32*b^12*d^4 - 96*a^2*b^10*d^4 - 64
*a^4*b^8*d^4 + 64*a^6*b^6*d^4 + 96*a^8*b^4*d^4 + 32*a^10*b^2*d^4) + (a + b*tan(c + d*x))^(1/2)*(16*b^10*d^3 +
32*a^2*b^8*d^3 - 32*a^6*b^4*d^3 - 16*a^8*b^2*d^3))*(1i/(4*(a^3*d^2*1i + b^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^2))
)^(1/2)*1i + ((1i/(4*(a^3*d^2*1i + b^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2)*(32*b^12*d^4 + (1i/(4*(a^3*d^
2*1i + b^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*
d^5 + 640*a^5*b^8*d^5 + 640*a^7*b^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d^5) + 96*a^2*b^10*d^4 + 64*a^4*b^8*d^
4 - 64*a^6*b^6*d^4 - 96*a^8*b^4*d^4 - 32*a^10*b^2*d^4) + (a + b*tan(c + d*x))^(1/2)*(16*b^10*d^3 + 32*a^2*b^8*
d^3 - 32*a^6*b^4*d^3 - 16*a^8*b^2*d^3))*(1i/(4*(a^3*d^2*1i + b^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2)*1i)
/(((1i/(4*(a^3*d^2*1i + b^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2)*(32*b^12*d^4 + (1i/(4*(a^3*d^2*1i + b^3*
d^2 - a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a
^5*b^8*d^5 + 640*a^7*b^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d^5) + 96*a^2*b^10*d^4 + 64*a^4*b^8*d^4 - 64*a^6*
b^6*d^4 - 96*a^8*b^4*d^4 - 32*a^10*b^2*d^4) + (a + b*tan(c + d*x))^(1/2)*(16*b^10*d^3 + 32*a^2*b^8*d^3 - 32*a^
6*b^4*d^3 - 16*a^8*b^2*d^3))*(1i/(4*(a^3*d^2*1i + b^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2) - ((1i/(4*(a^3
*d^2*1i + b^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2)*((1i/(4*(a^3*d^2*1i + b^3*d^2 - a*b^2*d^2*3i - 3*a^2*b
*d^2)))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a^5*b^8*d^5 + 640*a^7*b^6*d^5
 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d^5) - 32*b^12*d^4 - 96*a^2*b^10*d^4 - 64*a^4*b^8*d^4 + 64*a^6*b^6*d^4 + 96*a
^8*b^4*d^4 + 32*a^10*b^2*d^4) + (a + b*tan(c + d*x))^(1/2)*(16*b^10*d^3 + 32*a^2*b^8*d^3 - 32*a^6*b^4*d^3 - 16
*a^8*b^2*d^3))*(1i/(4*(a^3*d^2*1i + b^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2) + 16*a*b^8*d^2 + 48*a^3*b^6*
d^2 + 48*a^5*b^4*d^2 + 16*a^7*b^2*d^2))*(1i/(4*(a^3*d^2*1i + b^3*d^2 - a*b^2*d^2*3i - 3*a^2*b*d^2)))^(1/2)*2i